Порядок чередования этапов процесса редупликации днк. Днк и гены. При половом размножении появляется

ДНК является надежным хранилищем генетической информации. Но ее нужно не только держать в сохранности, но и передавать потомству. От этого зависит выживаемость вида. Ведь родители должны передать детям все то, чего они достигли в ходе эволюции. В ней записано все: начиная от количества конечностей и заканчивая цветом глаз. Конечно, у микроорганизмов этой информации гораздо меньше, но и ее нужно передать. Для этого клетка делится. Чтобы генетическая информация досталась обеим дочерним клеткам, ее нужно удвоить, этот процесс называется "репликация ДНК". Она происходит перед делением клетки, неважно, какой именно. Это может быть бактерия, которая решила размножиться. Или это может быть рост новой кожи на месте пореза. Процесс удвоения дезоксирибонуклеиновой кислоты должен четко отрегулироваться и завершиться до начала деления клетки.

Где происходит удвоение

Репликация ДНК происходит непосредственно в ядре (у эукариот) или в цитоплазме (у прокариот). Нуклеиновая кислота состоит из нуклеотидов - аденина, тимина, цитозина и гуанина. Обе цепочки молекулы построены по принципу комплиментарности: аденину в одной цепи соответствует тимин, а гуанину - цитозин. Удвоение молекулы должно пройти таким образом, чтобы и у дочерних спиралей сохранился принцип комплиментарности.

Начало репликации - инициация

Дезоксирибонуклеиновая кислота представляет собой двуцепочечную спираль. Репликация ДНК происходит путем достраивания дочерних цепей по каждой родительской цепочке. Чтобы этот синтез стал возможен, спирали нужно «распутать», а цепочки отделить друг от друга. Эту роль выполняет геликаза - она раскручивает спираль дезоксирибонуклеиновой кислоты, вращаясь с большой скоростью. Начало удвоения ДНК не может начаться с любого места, такой сложный процесс требует определенного участка молекулы - сайта инициации репликации. После того как была определена начальная точка удвоения, а геликаза начала свою работу по распутыванию спирали, цепочки ДНК расходятся в стороны, образуя репликативную вилку. На них садятся ДНК-полимеразы. Именно они и будут синтезировать дочерние цепочки.

Элонгация

В одной молекуле дезоксирибонуклеиновой кислоты может образоваться от 5 до 50 репликативных вилок. Синтез дочерних цепочек происходит одновременно в нескольких участках молекулы. Но это непросто достраивание комплиментарных нуклеотидов. Цепочки нуклеиновой кислоты антипараллельны друг другу. Разная направленность родительских цепей сказывается при удвоении, это обусловило сложный механизм репликации ДНК. Одна из цепей достраивается дочерней непрерывно и называется лидирующей. Оно и правильно, ведь полимеразе очень удобно присоединять свободный нуклеотид к 3’-ОН концу предыдущего. Такой синтез идет непрерывно, в отличие от процесса на второй цепи.

Запаздывающая цепь, фрагменты О’Казаки

С другой цепочкой возникают сложности, ведь там свободным оказывается 5’-конец, к которому невозможно прикрепить свободный нуклеотид. Тогда ДНК полимераза действует с другой стороны. Для того чтобы достроить дочернюю цепочку, создается праймер, комплиментарный родительской цепи. Он образуется у самой репликативной вилки. С него и начинается синтез маленького кусочка, но уже по «верному» пути - присоединение нуклеотидов происходит к 3’-концу. Таким образом, достраивание цепочки у второй дочерней спирали происходит прерывисто и имеет направление, противоположное движению репликативной вилки. Эти фрагменты были названы фрагментами О’Казаки, они имеют длину около 100 нуклеотидов. После того как фрагмент достроился до предыдущего готового кусочка, праймеры вырезаются специальным ферментом, место выреза заполняется недостающими нуклеотидами.

Терминация

Удвоение завершается, когда обе цепочки достроили себе дочерние, а все фрагменты О’Казаки сшиты между собой. У эукариотов репликация ДНК заканчивается, когда репликативные вилки встречаются друг с другом. А у прокариот эта молекула кольцевая, а процесс ее удвоения происходит без предварительного разрыва цепи. Получается, что вся дезоксирибонуклеиновая кислота является одним большим репликоном. И удвоение заканчивается тогда, когда репликативные вилки встречаются на противоположной стороне кольца. После окончания репликации обе цепочки родительской дезоксирибонуклеиновой кислоты должны быть сцеплены обратно, после чего обе молекулы закручиваются до образования суперспиралей. Далее происходит метилирование обеих молекул ДНК по аденину в участке -ГАТЦ-. Это не разъединяет цепи и не мешает их комплиментарности. Это необходимо для складывания молекул в хромосомы, а также для регуляции чтения генов.

Скорость и точность репликации

Вторая стадия удваивания ДНК (элонгация) проходит со скоростью около 700 нуклеотидов в секунду. Если вспомнить, что на один виток нуклеиновой кислоты приходится 10 пар мономеров, то выходит, что во время «расплетания» молекула вращается с частотой 70 оборотов в секунду. Для сравнения: скорость вращения кулера в системном блоке компьютера составляет примерно 500 оборотов в секунду. Но несмотря на высокие темпы, ДНК полимераза практически никогда не ошибается. Ведь она просто подбирает комплиментарные нуклеотиды. Но даже если она совершает ошибку, ДНК-полимераза ее распознает, делает шаг назад, отрывает неправильный мономер и заменяет его верным. Механизм репликации ДНК очень сложен, но основные моменты мы смогли разобрать. Важно понимать его значение как для микроорганизмов, так и для многоклеточных существ.

Молекула ДНК — это находящаяся в хромосоме структура. Одна хромосома содержит одну такую молекулу, состоящую из двух нитей. Редупликация ДНК — это передача информации после самовоспроизведения нитей от одной молекулы на другую. Она присуще как ДНК, так и РНК. В данной статье рассматривается процесс редупликации ДНК.

Общие сведения и виды синтеза ДНК

Известно, что нити в молекуле закручены. Однако, когда начинается процесс редупликации ДНК, они деспирализуются, затем отходят в стороны, и на каждой синтезируется новая копия. По завершении появляются две абсолютно идентичные молекулы, в каждой из которых присутствует материнская и дочерняя нити. Такой синтез получил название полуконсервативный. Молекулы ДНК отодвигаются, оставаясь при этом в единой центромере, и окончательно расходятся лишь тогда, когда у этой центромеры начинается процесс деления.

Другой вид синтеза получил название репаративный. Он, в отличие от предыдущего, не связан с какой-либо клеточной стадией, но начинается при возникновении повреждений ДНК. Если они носят слишком обширный характер, то клетка в конце концов погибает. Однако, если повреждения локальны, то их можно восстановить. В зависимости от проблемы восстановлению подлежит отдельная или две сразу цепочки ДНК. Этот, как его еще называют, внеплановый синтез не занимает продолжительного времени и не требует больших энергозатрат.
Но когда происходит редупликация ДНК, то расходуется много энергии, материала, продолжительность его растягивается на часы.
Редупликация делится на три периода:

  • инициацию;
  • элонгацию;
  • терминацию.

Рассмотрим подробнее эту последовательность редупликации ДНК.

Инициация

В ДНК человека — несколько десятков миллионов пар нуклеотидов (у животных их насчитывается всего сто девять). Редупликация ДНК начинается во многих местах цепочки по следующим причинам. Примерно в это же время в РНК происходит транскрипция, но на время синтеза ДНК она приостанавливается в некоторых отдельных местах. Поэтому перед таким процессом в цитоплазме клетки накапливается достаточное количество вещества для того, чтобы поддержать экспрессию генов и чтобы жизнедеятельность клетки не была нарушена. Ввиду этого процесс должен проходить как можно быстрее. Трансляция в этот период осуществляется, а транскрипция не ведется. Как показали исследования, редупликация ДНК происходит сразу в нескольких тысячах точек — небольших участках с определенной последовательностью нуклеотидов. К ним присоединяются специальные инициаторные белки, к которым в свою очередь присоединяются другие ферменты редупликации ДНК.

Фрагмент ДНК, где происходит синтез, называется репликоном. Он начинается от точки начала и заканчивается тогда, когда фермент завершает репликацию. Репликон автономен, а также снабжает весь процесс собственным обеспечением.
Процесс может начаться не со всех точек сразу, где-то он начинается раньше, где-то — позже; может протекать в одном или в двух противоположных направлениях. События происходят в следующем порядке, когда образуются:

  • репликационная вилка;
  • РНК-затравка.

Репликативная вилка

Эта часть представляет собой процесс, при котором на отсоединенных нитях ДНК происходит синтез дезоксирибонуклеиновых нитей. Вилки при этом образуют так называемый глазок редупликации. Процессу предшествует целый ряд действий:

  • освобождение от связи с гистонами в нуклеосоме — такие ферменты редупликации ДНК как метилирование, ацетилирование и фосфорилирование производят химические реакции, в результате которых белки теряют свой положительный заряд, что способствует их высвобождению;
  • деспирализация — это раскручивание, которое необходимо для дальнейшего освобождения нитей;
  • разрыв связей водорода между нитями ДНК;
  • их расхождение в разные стороны молекулы;
  • фиксация, происходящая при помощи белков SSB.

РНК-затравка

Синтез осуществляет фермент, под названием ДНК-полимераза. Однако начать его самостоятельно он не может, поэтому это делают другие ферменты — РНК-полимеразы, которые называют еще РНК-затравками. Они синтезируются параллельно дезоксирибонуклеиновым нитям по Таким образом, инициация заканчивается синтезом двух РНК-затравок на двух разорванных и отошедших в разные стороны нитях ДНК.

Элонгация

Данный период начинается с присоединения нуклеотида и 3" концу РНК-затравки, что осуществляет уже упомянутая ДНК-полимераза. К первому она присоединяет второй, третий нуклеотид, и так далее. Основания новой нити соединяются с материнской цепочкой Считается, что синтез нити идет в направлении 5 "- 3".
Там, где он происходит в сторону репликационной вилки, синтез протекает непрерывно и удлиняется при этом. Поэтому такую нить называют ведущей или лидирующей. На ней РНК-затравки больше не формируются.

Однако на противоположной материнской нити ДНК-нуклеотиды продолжают присоединяться к РНК-затравке, и дезоксирибонуклеиновая цепь синтезируется в противоположном от вилки редупликации направлении. Ее в этом случае называют запаздывающей или отстающей.

На отстающей нити синтез происходит фрагментарно, где по окончании одного участка начинается синтез на другом участке поблизости при помощи все той же РНК-затравки. Таким образом, на запаздывающей цепи имеются два фрагмента, которые соединены ДНК и РНК. Они получили название фрагменты Оказаки.

Далее все повторяется. Тогда расплетается другой виток спирали, разрываются связи водорода, нити расходятся в стороны, ведущая цепь удлиняется, на отстающей синтезируется следующий фрагмент РНК-затравки, после чего — фрагмент Оказаки. После этого на запаздывающей нити РНК-затравки разрушаются, а фрагменты ДНК соединяются в одну. Так на этой цепи происходит одновременно:

  • образование новых РНК-затравок;
  • синтез фрагментов Оказаки;
  • разрушение РНК-затравок;
  • воссоединение в одну единую цепь.

Терминация

Процесс продолжается до тех пор, пока две репликативные вилки не встретятся, или одна из них не подойдет к концу молекулы. После встречи вилок дочерние нити ДНК соединяются ферментом. В случае же, если вилка отошла к концу молекулы, редупликация ДНК заканчивается с помощью специальных ферментов.

Коррекция

В данном процессе важная роль отводится контролю (или коррекции) редупликации. К месту синтеза поступают все четыре вида нуклеотидов, а путем пробного спаривания ДНК-полимераза отбирает те, которые необходимы.

Нужный нуклеотид должен быть способен сформировать столько же связей водорода, сколько аналогичный нуклеотид на матричной нити ДНК. Кроме того, между сахарофосфатными остовами должно быть определенное постоянное расстояние, соответствующее трем кольцам в двух основаниях. Если нуклеотид не соответствует этим требованиям, соединение происходить не будет.
Контроль проводится перед включением его в состав цепи и перед включением последующего нуклеотида. После этого формируется связь в остове сахарофосфата.

Мутационная изменчивость

Механизм редупликации ДНК, несмотря на высокий процент точности, всегда имеет нарушения в нитях, называющихся в основном «генными мутациями». Примерно на тысячу нуклеотидных пар приходится одна ошибка, которая называется конвариантная редупликация.

Она случается по разным причинам. К примеру, при высокой или слишком низкой концентрации нуклеотидов, дезаминирования цитозина, присутствия мутагенов в области синтеза, и другое. В некоторых случаях ошибки могут исправиться репарационными процессами, в других исправление становится невозможным.

Если повреждение коснулось неактивного места, ошибка не будет иметь тяжелых последствий, когда происходит процесс редупликации ДНК. Последовательность нуклеотида того или иного гена может проявиться с ошибкой спаривания. Тогда дело обстоит иначе, и негативным результатом может стать как гибель этой клетки, так и гибель всего организма. Следует также учитывать, что основаны на мутационной изменчивости, которая делает генофонд пластичнее.

Метилирование


В момент синтеза или сразу после него происходит метилирование цепей. Считается, что у человека этот процесс нужен для того, чтобы сформировать хромосомы и регулировать транскрипцию генов. В бактериях данный процесс служит защитой ДНК от разрезания его ферментами.

Репликация ДНК - это процесс ее удвоения перед делением клетки. Иногда говорят «редупликация ДНК». Удвоение происходит в S-фазе интерфазы клеточного цикла .

Очевидно, самокопирование генетического материала в живой природе есть необходимость. Только так дочерние образующихся при делении клетки могут содержать столько же ДНК, сколько его изначально было в исходной. Благодаря репликации все генетически запрограммированные особенности строения и метаболизма передаются в ряду поколений.

В процессе деления клетки каждая молекула ДНК из пары идентичных отходит в свою дочернюю клетку. Таким образом обеспечивается точная передача наследственной информации.

При синтезе ДНК потребляется энергия, т. е. это энергозатратный процесс.

Механизм репликации ДНК

Молекула ДНК сама по себе (без удвоения) представляет собой двойную спираль. В процессе редупликации водородные связи между двумя ее комплементарными цепями разрываются. И на каждой отдельной цепи, которая теперь служит шаблоном-матрицей, строится новая комплиментарная ей цепь. Таким образом образуются две молекулы ДНК. У каждой одна цепь достается ей от материнской ДНК, вторая - вновь синтезированная. Поэтому механизм репликации ДНК является полуконсервативным (одна цепь старая, одна новая). Такой механизм репликации был доказан в 1958 году.

В молекуле ДНК цепи антипараллельны. Это значит, что одна нить идет в направлении от 5" конца к 3", а комплементарная ей - наоборот. Цифры 5 и 3 обозначают номера атомов углерода в дезоксирибозе, входящей в состав каждого нуклеотида. Через эти атомы нуклеотиды связаны между собой фосфодиэфирными связями. И там, где у одной цепи 3" связи, у другой - 5", так как она перевернута, т. е. идет в другом направлении. Для наглядности можно представить, что вы положили руку на руку, как первоклашка, сидящий за партой.

Основной фермент, который выполняет наращивание новой нити ДНК, способен делать это только в одном направлении. А именно: присоединять новый нуклеотид только к 3" концу. Таким образом, синтез может идти только в направлении от 5" к 3".

Цепи антипараллельны, значит синтез должен идти на них в разных направлениях. Если бы цепи ДНК сначала полностью расходились, а потом на них уже строилась новая комплементарная, то это не было бы проблемой. В действительности же цепи расходятся в определенных точках начала репликации , и в этих местах на матрицах сразу начинается синтез.

Формируются так называемые репликационные вилки . При этом на одной материнской цепи синтез идет в сторону расхождения вилки, и этот синтез происходить непрерывно, без разрывов. На второй матрице синтез идет в обратную сторону от направления расхождения цепей исходной ДНК. Поэтому такой обратный синтез может идти только кусками, которые называются фрагментами Оказаки . Позже такие фрагменты «сшиваются» между собой.

Дочерняя цепь, которая реплицируется непрерывно, называется лидирующей, или ведущей . Та, которая синтезируется через фрагменты Оказаки, - запаздывающей, или отстающей , так как фрагментарная репликация выполняется медленнее.

На схеме нити родительской ДНК постепенно расходятся в направлении, в котором идет синтез ведущей дочерней цепи. Синтез отстающей цепи идет в обратную расхождению сторону, поэтому вынужден выполняться кусками.

Другой особенностью основного фермента синтеза ДНК (полимеразы) является то, что он не может сам начать синтез, только продолжить. Ему необходима затравка, или праймер . Поэтому на родительской нити сначала синтезируется небольшой комплементарный участок РНК, потом уже происходит наращивание цепи с помощью полимеразы. Позже праймеры удаляются, дыры застраиваются.

На схеме затравки показаны только на отстающей цепи. На самом деле они есть и на лидирующей. Однако здесь нужен только один праймер на вилку.

Поскольку цепи материнской ДНК не всегда расходятся с концов, а в точках инициализации, то на самом деле формируются не столько вилки, сколько глазки, или пузыри.

В каждом пузыре может быть две вилки, т. е. цепи будут расходиться в двух направлениях. Однако могут только в одном. Если все же расхождение двунаправлено, то из точки инициализации на одной нити ДНК синтез будет идти в двух направлениях - вперед и назад. При этом в одну сторону будет выполняться непрерывный синтез, а в другую - фрагментами Оказаки.

ДНК прокариот не линейна, а имеет кольцевую структуру и лишь одну точку начала репликации.

На схеме красным и синим цветом показаны две нити родительской молекулы ДНК. Новые синтезирующиеся нити показаны пунктиром.

У прокариот самокопирование ДНК выполняется быстрее, чем у эукариот. Если скорость редупликации у эукариот составляет сотни нуклеотидов в секунду, то у прокариот достигает тысячи и более.

Ферменты репликации

Репликацию ДНК обеспечивает целый комплекс ферментов, который называется реплисомой . Всего ферментов и белков репликации более 15. Ниже перечислены наиболее значимые.

Основным ферментом репликации является уже упомянутая ДНК-полимераза (на самом деле существует несколько разных), которая непосредственно осуществляет наращивание цепи. Это не единственная функция фермента. Полимераза способна «проверять», какой нуклеотид пытается присоединиться к концу. Если неподходящий, то она его удаляет. Другими словами, частичная репарация ДНК, т. е. ее исправление ошибок репликации, происходит уже на этапе синтеза.

Нуклеотиды, находящиеся в нуклеоплазме (или цитоплазме у бактерий), существуют в форме трифосфатов, т. е. это не нуклеотиды, а дезоксинуклеозидтрифосфаты (дАТФ, дТТФ, дГТФ, дЦТФ). Они похожи на АТФ , у которой три фосфатных остатка, два из которых связаны макроэргической связью. При разрыве таких связей выделяется много энергии. Также и у дезоксинуклеозидтрифосфатов две связи макроэргические. Полимераза отделяет два последних фосфата и использует выделяющуюся энергию на реакцию полимеризации ДНК.

Фермент хеликаза разделяет нити матричной ДНК, разрывая водородные связи между ними.

Поскольку молекула ДНК представляет собой двойную спираль, то разрыв связей провоцирует еще большее ее скручивание. Представьте канат из двух закрученных относительно друг друга веревок, и вы с одной стороны за концы тянете одну вправо, другую - влево. Сплетенная часть станет еще больше скручиваться, будет более тугой.

Для устранения подобного напряжения необходимо, чтобы еще неразошедшаяся двойная спираль быстро крутилась вокруг своей оси, «сбрасывая» возникающую сверхспирализацию. Однако это слишком энергозатратно. Поэтому в клетках реализуется другой механизм. Фермент топоизомераза разрывает одну из нитей, пропускает через разрыв второю и снова сшивает первую. Чем и устраняются возникающие супервитки.

Разошедшиеся в результате действия хеликазы нити матричной ДНК пытаются опять соединиться своими водородными связями. Чтобы этого не произошло, в действие вступают ДНК-связывающие белки . Это не ферменты в том понимании, что реакций они не катализируют. Такие белки прикрепляются к нити ДНК на всем ее протяжении и не дают комплементарным цепям матричной ДНК сомкнуться.

Праймеры синтезируются РНК-праймазой . А удаляются экзонуклеазой . После удаления праймера «дыру» застраивает другой тип полимеразы. Однако при этом отдельные участки ДНК не сшиваются.

Отдельные части синтезируемой цепи сшиваются таким ферментом репликации как ДНК-лигаза .

Читайте также:
  1. Аналоговые электромеханические приборы для измерений силы тока и напряжения. Электростатические измерительные механизмы
  2. Антидоты: определение. Основные механизмы антидотного действия
  3. В.63. Диагностика банкротства механизмы фин.стабилизации пр-ия.
  4. Важнейшие принципы разделения функции управления инфраструктуры и ресурсов территорий, и механизмы их эффективного функционирования.
  5. Взаимодействие органов местного самоуправления с предприятиями различных форм собственности: цели и механизмы.
  6. Волевая регуляция, ее критерии, функции и психологические механизмы.
  7. Вопрос 4. Вспомогательные механизмы выделения частиц из потока.

Репликация ДНК - это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК.

При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками.

Репликацию ДНК осуществляет фермент ДНК-полимераза.

В основе механизма репликация лежит ферментативный синтез дезоксирибонуклеиновой кислоты (ДНК)

Строгая специфичность спаривания азотистых оснований в молекуле ДНК обусловливает комплементарность последовательностей оснований в двух цепях и обеспечивает высокую точность

Согласно Уотсону и Крику, процесс Репликация ДНК предусматривает:

1) разрыв водородных связей и расплетение нитей двойной спирали;

2) синтез на одиночных нитях комплементарных цепей.

В результате из одной двухцепочечной ДНК возникают две подобные молекулы, причём в каждой из дочерних молекул одна полинуклеотидная цепь родительская, а другая - синтезированная заново (полуконсервативный механизм Репликация).

Процесс редупликации :

Раскручивание спирали молекулы - отделение одной цепи от другой на части молекулы ДНК

Воздействие фермента ДНК-полимеразы на молекулу

Присоединение к каждой цепи ДНК комплементарных нуклеотидов

Образование двух молекул ДНК из одной.

Функциональная единица репликации – репликон (начало – инициация, конец – завершение). Однажды начавшись, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован (удвоен).

Рост полинуклеотидной цепи идет только с ее З"-конца, т. е. в направлении 5" : 3". Фермент, катализирующий эту реакцию - ДНК – полимераза .

Репликационная вилка асимметрична . Из двух синтезируемых дочерних цепей ДНК одна строится непрерывно, а другая – с перерывами. Первую называют ведущей, или лидирующей , цепью, а вторую – отстающей.

В качестве затравок для синтеза фрагментов отстающей цепи служат короткие отрезки РНК, комплементарные матричной цепи ДНК. Эти РНК-затравки (праймеры) , состоящие примерно из 10 нуклеотидов, с определенными интервалами синтезируются на матрице отстающей цепи из рибонуклеозидтрифосфатов в направлении 5" : 3" с помощью фермента РНК-праймазы.



РНК-праймеры затем наращиваются дезоксинуклеотидами с 3"-конца ДНК-полимеразой, которая продолжает наращивание до тех пор, пока строящаяся цепь не достигает РНК-затравки, присоединенной к 5"-концу предыдущего фрагмента. Образующиеся таким образом фрагменты (т. наз. фрагменты Оказаки ) отстающей цепи насчитывают у бактерий 1000-2000 дезоксирибонуклеотидных остатков; в животных клетках их длина не превышает 200 нуклеотидов.

Чтобы обеспечить образование непрерывной цепи ДНК из многих таких фрагментов, в действие вступает особая система репарации ДНК, удаляющая РНК-затравку и заменяющая ее на ДНК. Завершает весь процесс фермент ДНК-лигаза , катализирующий образование фосфодиэфирной связи между группой З"-ОН нового фрагмента ДНК и 5"-фосфатной группой предыдущего фрагмента.

Раскручивание двойной спирали и пространств. разделение цепей осуществляется при помощи нескольких специальных белков. Геликазы расплетают короткие участки ДНК, находящиеся непосредственно перед репликационной вилкой.

К каждой из разделившихся цепей присоединяется несколько молекул ДНК-связывающих белков, которые препятствуют образованию комплементарных пар и обратному воссоединению цепей.



В случае кольцевого репликона (напр., у плазмиды) описанный процесс наз. q-репликацией. Кольцевые молекулы ДНК закручены сами на себя (суперспирализованы), при раскручивании двойной спирали в процессе репликации они должны непрерывно вращаться вокруг собственной оси. При этом возникает торсионное напряжение, которое устраняется путем разрыва одной из цепей. Затем оба конца сразу же вновь соединяются друг с другом. Эту функцию выполняет фермент ДНК-топоизомераза .

ДНК – полимераза

ДНК-полимераза - фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведётся считывание. Собираемая молекула комплементарна шаблонной моноспирали и идентична второму компоненту двойной спирали.

Выделяют ДНК-зависимую ДНК-полимеразу, использующую в качестве матрицы одну из цепей ДНК, и РНК-зависимую ДНК-полимеразу, способную также к считыванию информации с РНК (обратная транскрипция).

ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. Среднее количество нуклеотидов, присоединяемое ферментов ДНК-полимеразой за один акт связывания/диссоциации с матрицей, называют процессивностью.

ДНК – геликазы

ДНК геликазы - ферменты раскручивающие двуцепочечную спираль ДНК с затратой энергии гидролиза трифосфатов NTP. Образуемая одноцепочечная ДНК участвует в различных процессах, таких как репликация, рекомбинация, и репарация. ДНК геликазы необходимы для репликации, репарации, рекомбинации и транскрипции. Геликазы присутствуют во всех организмах.

Какой углевод входит в состав нуклеотидов РНК?

1) рибоза2) глюкоза3) урацил4) дезоксирибоза

2) К полимерам относятся:

1) крахмал, белок, целлюлоза 3) целлюлоза, сахароза, крахмал

2) белок, гликоген, жир 4) глюкоза, аминокислота, нуклеотид.

3) Ученый, открывший клетку:

1) Р.Гук; 3) Т. Шванн

2); Р.Броун 4) М. Шлейден

4. Найдите правильное продолжение выражения «фотолиз воды происходит внутри...»:

1) митохондрий на стенках крист; 3) пластид, в строме;

2) пластид, в тилакоидах; 4) мембран ЭПС.

5. В течение световой фазы фотосинтеза растение использует световую энергию для образования:

1) АТФ из АДФ и Ф; 3) НАДФ + + Н 2 -> НАДФ Н;

2) Глюкозы и углекислого газа; 4) О 2 из СО 2 .

6.Темновые реакции фотосинтеза протекают в:

а)строме хлоропластов; в)мембранах тилакоидов;

б)рибосомах хлоропластов; г)гранах.

Что общего между фотосинтезом и процессом окисления глюкозы?

1) оба процесса происходят в митохондриях;

2) оба процесса происходят в хлоропластах;

3) в результате этих процессов образуется глюкоза;

4) в результате этих процессов образуется АТФ.

8. В результате какого процесса органические вещества об­разуются из неорганических?

1)биосинтез белка; 3) синтез АТФ;

2)фотосинтез; 4) гликолиз.

9. Энергетически ценным продуктом анаэробного гликолиза являются две молекулы:

1) молочной кислоты; 3) АТФ;

2) пировиноградной кислоты; 4) этанола.

10. Какой из нуклеотидов не входит в состав ДНК:

1) тимин; 2) урацил; 3) аденин; 4) цитозин

При половом размножении появляется

1) меньшее разнообразие генотипов и фенотипов, чем при бесполом

2) большее разнообразие генотипов и фенотипов, чем при бесполом

3) менее жизнеспособное потомство

4) потомство, менее приспособленное к среде обитания

Каждая новая клетка происходит от такой же путем её

1) деления 3) мутации

2) адаптации 4) модификации

Закладка органов в эмбриональном развитии млекопитающих происходит на этапе

1) бластулы 3) дробление

2) нейрулы 4) гаструлы

Из каких зародышевых структур образуется нервная система и эпидермис кожи животных?

1)мезодермы 3) энтодермы

2)эктодермы 4) бластометров

Деление ядра при размножении происходит у

1) амебы обыкновенной 3) стафилококка

2) холерного вибриона 4) бациллы сибирской язвы

Генетическая информация родителей объединяется в потомстве при размножении

1) почкованием 3) семенами

2) вегетативном 4) спорами

17. Число хромосом при половом размножении в каждом поколении возрастало бы вдвое, если бы в ходе эволюции не сформировался процесс:

18. Первая анафаза мейоза завершается:

1) расхождением к полюсам гомологичных хромосом;

2) расхождение хроматид;

3) образованием гамет;

4) кроссинговером.

19. ДНК клетки несет информацию о строении:

1) белков, жиров и углеводов; 3) аминокислот;

2) белков и жиров; 4) ферментов.

20. Ген кодирует информацию о структуре:

1) нескольких белков;

2) одной из комплиментарных цепей ДНК;

3) аминокислотной последовательности в одной молекуле белка;

4) одной аминокислоты.

21. При репликации одной молекулы ДНК синтезируются новые цепи. Их количество в двух новых молекулах равно:

1) четырем; 2) двум; 3) одному; 4) трем.

22. Если в молекуле ДНК 20% составляют цитозиновые нуклеотиды, то процент тиминовых нуклеотидов равен:

1) 40%; 2) 30%; 3) 10%; 4) 60%.

23.Трансляцией называется процесс:

1) образование и-РНК; 3) образование белковой цепи на рибосоме;

2) удвоение ДНК; 4) соединения т-РНК с аминокислотами.

24. Какой закон проявится в наследовании признаков при скрещивании

организмов с генотипами: Аа х Аа?

1) единообразия 3) сцепленного наследования

2) расщепления 4) независимого наследования

25. Укажите особенности модификационной изменчивости.

1) возникает внезапно

2) проявляется у отдельных особей вида

3) изменения обусловлены нормой реакции

4) проявляется сходно у всех особей вида

5) носит адаптивный характер

6) передаётся потомству

Соотнесите вещества и структуры, участвующие в синтезе белка, с их функциями, проставив рядом с цифрами нужные буквы.

Установите в какой последовательности происходит процесс редупликации ДНК

А) раскручивание спирали молекулы

Б) воздействие ферментов на молекулу

В) отделение одной цепи от другой на части молекулы ДНК

Г) присоединение к каждой цепи ДНК комплементарных нуклеотидов

Д) образование двух молекул ДНК из одной